If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7n^2+67n-30=0
a = 7; b = 67; c = -30;
Δ = b2-4ac
Δ = 672-4·7·(-30)
Δ = 5329
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5329}=73$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(67)-73}{2*7}=\frac{-140}{14} =-10 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(67)+73}{2*7}=\frac{6}{14} =3/7 $
| 4x^2-34x=122 | | X+0.15x=140070 | | 2x=933800 | | 40=–5k | | (X-22)/2=x-48 | | A=1/2x25x15 | | (X-23)/3=x-65 | | –9x–18=–63 | | -2+5x=4x+35 | | x-7.6=5.22 | | 75*½=xx= | | 23–(3–5r)–r=–6+3(2+3r) | | 24=1/4x+8 | | 39=0.5(h-7)h | | n(n+6)=520 | | 2x-(3-x)=15 | | k(k+1)-352.8=0 | | 14k+8=-20 | | -10=4x=x+5 | | 2u^2+4u+51=(u+6)^2 | | 2x+x5=49 | | 63=7x+x+2x+(5x+3) | | 3(3x-6)=57 | | x+4-5=25-8 | | (3x^2+2x+4)/(x-2)=0 | | 14/z=7.5 | | 5x+20=-8+2x | | x/2+50=100 | | 6/100(x)=11700 | | 3(1/3-x)-1(-2x+7)=-3 | | √t−10=9 | | 30x-20=80 |